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LE'ITER TO THE EDITOR 

A new class of exact solutions for coupled scalar field 
equations 

N N Raot and D J Kaup 
Department of Mathematics, Clarkson University, Potsdam, NY 13699, USA 

Received 3 June 1991 

Abstract. We repon a class of exact solutions valid in new regimes of parameter values 
for a generic system of nonlinear coupled scalar field equations which is the stationary 
reduction ofthe SchrBdinger-Baussinesq (or Koneweg.de Vries) system, and which extends 
the Henan-Heiles system to Hamiltonians with indefinite kinetic energy. The results are 
applied to co-propagating coupled nonlinear waves in magnetized plasmas. 

Many physicai probiems iead to noniinear diiierentiai equations whose exaci anaiyiicai 
solutions are of great importance and interest for a variety of theoretical as well as 
practical reasons [l]. Recently, one of us (NNR) introduced [2] a generic system of 
coupled scalar field equations dealing with the nonlinear coupling of a high-frequency 
wave to .a suitable low-frequency wave in a dispersive medium. The equations are 
equivalent to the stationary equations obtainable from the Schrodinger-Boussinesq 
(or Korteweg-de Vries) system which is known to describe the nonlinear evolution of 
the modulational instability of high-frequency wave packets in dispersive media leading 
to solitary wave structures [3,4]. Furthermore, as discussed below, they extend the 
parameter regimes for the Henon-Heiles equations [l]  to include the case of 
Hamiltonians with indefinite kinetic energy. Equations similar to the generic system 
also occur in relativistic quantum field theories in 1 + 1 dimensions for localized fields 

well as the Korteweg-de Vries equations can be obtained as the symmetry reductions 
of the self-dual Yang-Mills field equations [6,7]. In earlier work [2], it was shown 
that the generic equations admit different classes of solutions valid on different hyper- 
surfaces in the allowed parameter space. We report in this letter a class of solutions 
valid in new regimes of the parameter values. 

with finite energy [5! .  !! has been recent!). shown that the non!inear Schrridinger as 

Consider the generic system of equations 121 

d2E p-= b , E  + b2@E 
d t 2  

d2@ 
A y= d , @ + d 2 a 2 +  d3E2 

d t  

where E and @ are any two scalar fields, and 5 is the independent variable; A, p ,  b , ,  
b, ,  d , ,  d2 and d ,  are parameters; all the quantities occurring in (1) and (2) are real. 

t Permanent address: Theoretical Physics Division, Physical Research Laboratory, Navrangpura, 
Ahmedabad 380009, India. 
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Equations (1) and (2) can be obtained from the coupled Schrodinger-Boussinesq (or 
Korteweg-de Vries) system by going into a stationary frame of reference [ 2 ] .  They can 
be derived from the Lagrangian 

where the ‘potential’ V (  E, 0) is given by 

V (  E, @) = -( d, b,  E + $b2d,@2 + fb2d,@’ + b2d3@ E ’). ( 4 )  
The corresponding Hamiltonian H is 

where the generalized momenta I IE and It4 are defined by 

Using ( 4 )  and (S), we eliminate .$ in (1) and (2) to derive the following equation for 
@ with respect to E :  

d2@ 
d E  

2Ap( H - V )  ?+ h2b2(bl E + b 2 @ E )  - Ab@(d,CJ+ d2Q2+ d3E2)  

+ 2Apd3( b,  E + b&E) - -2P2d3(d,@ + d 2 a 2 +  d3E2)  0. (6)  (3 
Equation (6) is complementary to equation (7) of [Z]. 

Equation (6) has a cubic term in the first-order derivative which makes it different 
from the well known equations of Painlevi type belonging to the polynomial class [8]. 
While attempts to obtain exact solutions of (6) valid in the entire parameter space 
have not been successful so far, it has been possible to find a class of solutions valid 
in new regimes of the parameter values by using 

CJ = CO+ C ,  E (7) 
where the coefficients CO and C ,  are to be determined uniquely and self-consistently. 
Note that (7) is different from equation (16) of [Z]  which, as discussed below, led to 
solutions having different symmetry properties as well as functional dependences on 
6. Using (7). equation (6) can be factorized to yield relations between E and @ which 
determine the following sets of parameter values. 

Case (A): C,=O. For this choice of CO, the parameters satisfy 

Ab, - p d ,  = O  (8) 

whereas C, is given by 

with Ab, - pd ,  # 0 and pd,(Ab2 - pd2)  > 0 .  Both signs of C ,  from (9) are allowed; this 
is due to the fact that (1) and (2) are invariant under E + - E .  Furthermore, any 
combination of the values of d ,  and d2 consistent with ( 8 )  and (9) is allowed. 
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Case (E):  d ,  +d& = 0. When d ,  , d2 and CO satisfy this relation, the  condition between 
the parameters is 

Ab, + C"(Ab2 - pd2)  = 0 (10) 

As in the previous case, both signs for C ,  from (9) are allowed. There are two cases 
for CO: 

(i) C,=O for which the allowed values are either d ,  = O  and d ,  = 0 or d ,  = O  and 
d2 # 0; 

(ii) CO # 0 for which case one requires either d ,  = 0, d2 = 0 and CO is determined 
by (10) or d,  # 0, d2 # 0 and CO = - d , / d ,  in which case (10) becomes 

Abld2-dl(Ah2-pdJ = 0 (11) 

where Ab2-pd, # O  is required. 

To obtain the explicit solutions, we derive from (7) and (1) 

(12) 
d2E p-= ( b ,  + b2Co)E + b2CIE 
df' 

which can be integrated to yield 

where e,, O2 and 8, are the roots of the cubic equation 

and C is a constant of integration. Equation (13) can be integrated using the transfor- 
mation 

to obtain the solution 

E(5)=8,sn2[v(f-fO).  k l + ~ 2 c n 2 [ d - 5 0 0 ) r k l  (16) 

where sn and cn are the Jacobian elliptic functions [SI, SO is a constant of integration, 
and 

The solution for @ ( f )  is obtained by using (16) in (7). that is 

WO= co+c,E(f) (19) 

where CO and C ,  are determined as discussed earlier. Note that the solution (16) for 
E ( f )  is qualitatively different from equation (18) of [9] which deals with a specific 
example of the generic system (1) and (2). 
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The constant of integration C determines the wavelength of the periodic solutions 
(16) and (19). For the special case when C = 0, the roots of the cubic equation (14) are 

Solution (16) together with (18) becomes 

where 9 is defined by 

b +b,C, 

48  
$= 

TL.. ----"-- --A: I..&:-- Fmr&f el -ht.:-arl h ...." : - - l 9 2 \  i.. 1 1 0 \  O - t h  tLSI-l..t:-..- 
1 U G  rurrrJyvrr"nr,g D " l " L l U l l  ,U. Y ( 5 ,  .a U"LLLll .*Y "J """.B , L A ,  ..I ,"I. " " L l l  ..IC a u I Y L I v I I ~  

are symmetric with respect to 6 =to and, furthermore, have sech' dependence on 6. 
This is to be contrasted with the solitions reported earlier [2,4] where € ( I )  was either 
anti-symmetric having sech tanh dependence or symmetric having sech dependence. 
In all cases, a(() is always symmetric with sech' dependence. 

As an application of the above results, we discuss below the coupling between the 

of which propagate perpendicular to the external magnetic field in a plasma. The 
equations governing the stationary wave propagation are [2,4] 

high-f.equency !!ppcr-hybr;.d \L(avcs znd the !ow-frequency mlgnctosonic waves, both 

d2E 
D , - - = A E + ~ ~ L W ~ ~ N E  

d5' 
d 2 N  
dt '  

8 --aN-a2N'-.r1'E2 

where E and N are respectively the normalized upper-hybrid electric field amplitude 
and the plasma number density perturbation; all the symbols in (23) and (24) are 
defined as in [2,4]. While (23) is obtained from a Schrodinger-like equation, (24) is 
the stationary reduction of either the Boussinesq equation or the Korteweg-de Vries 

the explicit solutions for the two cases mentioned earlier. 

Case (A). When the parameters satisfy the condition, Ap2-nDu=0, that is 

depen&ng on n, Camparing $3) an; (24) with (1) afi; (2), we  .w& dowii 

First, we consider localized solutions for which there are two cases possible: 

(25) 
na'=((M'-VL) for Boussinesq equation 
n 7 v I M - v~ ~) fnr u n . t ~ w ~ ~ - ~ e  vri.-. e"ultinn y o  .M\". . .". ...- " -w I.._.. 

the explicit solutions are 

where tu is a constant of integration, and 

K = (&) ' I2 .  
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In order that E ( 5 )  be real, (26) requires Do<O such that 

Zj32poHo- a21D01 > 0. (29) 

From (27) and (28), one requires that A < O  and N >  0. From (ZS), it is easy to conclude 
that the coupled stationary waves propagate with super-magnetosonic speed ( M  > V d  
accompanied by compressional ( N  > 0) density perturbations. Unlike the earlier solu- 
tions [2,  41, both the upper-hybrid wave envelope as well as the magnetosonic density 
perturbations are symmetric with respect to CO thereby recovering the solutions found 
earlier [ 101. 

Case (B). For parameters satisfying 

Ap2~2+a(Doa2+2 j32p~Ho)  = O  (30) 

E ( 5 )  =*Eo sech2[~(5-50)l (31) 

N(5) = -Nosech2[~(5-50)1 (32) 

the solutions are 

where 
112 

(33) 

(34) 

~ ( A I I ~ + Z ~ U W ~ ~ )  DoaZ+2pZpwHo 

3Aa2 + ZpoH0a 

4+*;;$2 [- I Eo = 

No = 
4pWH0a2 

and K is now given by 

(35) 
Aa2+2pWHOa ' I 2  

K = [  4D0a2 1 
where Do<O satisfies (29) so that Eo is real. Equation (20) then becomes 

(36) 

In order that I( is real, (35) requires Aa2+2pwHOa < 0. Substituting for Aa2 we find 
that the inequality can be satisfied only For a < O ,  that Is ,  M-< VM . This shows that in 
this parameter range only sub-magnetosonic solutions are possible in contrast to the 
previous case where the solitary wave speed is super-magnetosonic. Using (36) in (34), 
we find No>O which together with (32) shows that the upper-hybrid waves are 
accompanied by rarefaction density perturbations. 

Next, we consider the periodic solutions. In either case, they are obtained by solving 
the cubic equation (14) which, in the present example, becomes 

for Boussinesq equation 
for Korteweg-de Vries equation. 

=rM2- "3 Ap2a2 
lDola2-2P2PWHo ZVM(M- VM) 

If 0 , .  8, and 0, are the three real roots of (37), then the periodic solutions are given 
by (16) and (19) where k is given by (18) and 9 by 

The roots are chosen in such a way that (18) and (38) yield real values for k and 9 
and the coefficients CO and C ,  are determined as earlier. 
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It is of interest to point out the relationship between the generic equations, namely, 
(1) and (2). and the well known Henon-Heiles equations [ l ,  111. With some algebra, 
the number of independent parameters in ( 1 )  and (2) can be reduced by a suitable 
rescaling of the variables leading to 

d2E _- - pI E +2@E 
d5  

(39) 

(40) 

where pI = * I ,  p2 = +1 and A , ,  A, are parameters. The Hamiltonian for (39) and (40) 
is 

) (41) 
1 1 
2 3 p2E + -A,@’+ -A2@’ +p2@ E’ 

where H E  =p,(dE/df) and II,=d@/d& For p2=+1. the ‘kinetic energy’ in (41) is 
positive definite, and equations (39) and (40) with pI < O  and A, < O  correspond to the 
Henon-Heiles system which is known to be integrable for certain discrete sets of values 
of A, and A, [ l l ] .  On the other hand, for p l=- l ,  the Hamiltonian has indefinite 
kinetic energy, and the system (39), (40) is fundamentally different from the usual 
equations in classical dynamics where the kinetic energy is positive definite. In fact, 
as discussed elsewhere [12], the governing equations for the envelope solitons of 
coupled waves yield precisely such Hamiltonians having indefinite kinetic energy; the 
application considered above is just one example illustrating this feature. The solutions 
obtained in the present work as well as those found earlier [2,4] indicate the integrability 
of (39) and (40) for some specific values ofthe free parameters and/orinitial (boundary) 
conditions. It is possible that the generic system can be investigated using the methods 
applied to the Henon-Heiles and other related systems [l,  111. However, the question 
of complete integrability in the entire allowed parameter space as well as the possible 
existence of chaotic behaviour of Hamiltonian systems with indefinite kinetic energy 
is a subject not well understood and therefore needs further investigations. 

To summarize, we have found a class of exact analytical solutions for a generic 
system of coupled scalar field equations which are the stationary reduction of the 
Schrodinger-Boussinesq (Korteweg-de Vries) equations and which extend the param- 
eter regimes of the Henon-Heiles system. The solutions are in general periodic, existing 
in two different regions of the allowed parameter space, and yield, as a limiting case, 
localized symmetric solutions for both the fields having sech2 dependence. We have 
applied the results to a specific example of coupled wave propagation in magnetized 
plasmas and have shown the existence of new parameter regimes for localized upper- 
hybrid and magnetosonic waves. 

One of us (NNR) thanks Dr V G Papagerogiou for useful discussions. This work is 
supported by the University Research Initiative Grant no AFOSR-89-0510 and ONR 
Grant no N00014-88-K-0153. 

References 

[ I ]  Lichtenberg A J and Lieberman M A 1983 Regulor and Stochastic Morion (Berlin: Springer) 
[Z] Rao N N 1989 J. Phys. A: Math.  Gen. 22 4813 



Letter to the Editor L999 

[3] Kates R E and Kaup D J 1989 J. Plmmo Phys. 42 521 
[4] Rao N N 1988 J. Plasma Phys. 39 385 
[5] Montonen C 1976 N u d  Phys. B 112 349 
[6] Mason L J and Sparling G A J 1989 Phys. Len. 137A 29 
[7] Chakravany S. Ablowitz M J and Clarkson P A  1990 Phys. Reo. Lelr. 65 1085 
[SI Davis H T 1962 Infroduetion lo Nonlineor Differenrial and Inregrol Equotions (New York: Dover) 
[9] Nishikawa K, Hojo H. Mima K and lkeri H 1974 Phys. Reo. Leu. 33 148 
[IO] Lan H and Wang K 1990 Phys. Lerr. 144A 244 
[ I l l  Chang Y F, Tabor M and Weiss J 1982 1. Morh. Phys. 23 531 
[I21 Rao N N. Buti Band Khadkikar S B 1986 Promano 27 497 


